Interface scattering and thermal conductivity in Si/SiGe alloy superlattices

ZLATAN AKSAMIIJA, University of Wisconsin-Madison, IRENA KNEZEVIC, University of Wisconsin-Madison — Si/Si$_{1-x}$Ge$_x$ alloy superlattices (SLs) show promise for application as efficient thermoelectrics because of their low thermal conductivity, below that of the bulk Si$_{1-x}$Ge$_x$ alloy. Lattice thermal conductivity in these superlattices is dominated by scattering from the rough interfaces between layers, even at room temperature. Therefore, interface properties, such as roughness, orientation, and composition, are expected to play a significant role in thermal transport and offer additional degrees of freedom to control the thermal conductivity in semiconductor nanostructures based on superlattices. In this paper, we demonstrate the sensitivity of the lattice thermal conductivity in SLs to the interface properties, using a momentum-dependent model for scattering of phonons from rough material interfaces. Our results show excellent agreement with experimental data and explain the measured thickness and temperature dependence, as well as anisotropy of thermal conductivity in superlattices.

This work has been supported by the Computing Innovation Fellows Project (NSF award No. 0937060 to the Computing Research Association, sub-award CIF-146 to the University of Wisconsin) and by the AFOSR YIP program (award No. FA9550-09-1-0230).

Zlatan Aksamija
University of Wisconsin-Madison

Date submitted: 19 Nov 2010
Electronic form version 1.4