Abstract Submitted
for the MAR11 Meeting of
The American Physical Society

Developmental and Metabolite Transport Strategies to Optimize the Growth of Filamentous Cyanobacteria

AIDAN BROWN, ANDREW RUTENBERG, Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada — Individual cells of filamentous cyanobacteria share nutrients through cytoplasmic and/or periplasmic connections. Under conditions of low fixed-nitrogen some cells terminally differentiate into heterocysts, which fix nitrogen for the remaining photosynthetic vegetative cells. Heterocysts are observed to occur in a regular pattern separated by clusters of vegetative cells. Using a quantitative model of nitrogen uptake, consumption and transport together with vegetative cell growth and division, we explore how the overall growth rate of the filament depends on different heterocyst positioning patterns and on particular strategies of nitrogen transport.

Andrew Rutenberg
Department of Physics, Dalhousie University,
Halifax, Nova Scotia, Canada

Date submitted: 27 Nov 2010
Electronic form version 1.4