Pressure and Temperature Effects on Polypeptides and Biomolecules Probed by Micro-Raman Spectroscopy

SANGHOON PARK, ALFONS SCHULTE, Department of Physics and College of Optics, University of Central Florida — We investigate pressure and temperature effects on the secondary structure of Poly-L-glutamic acid (PGA) in D$_2$O buffer (pH 5.4) solution. Our setup employs a Raman microscope equipped with a micro-capillary high-pressure cell and a variable temperature stage. Raman spectra are acquired over the pressure range from 0.1 to 300 MPa while the temperature can be varied from 270 K to 330 K. The amide I band of PGA is sensitive to pressure and temperature, and by spectral deconvolution we determine the relative contributions due to α-helix and random coil conformations. The amount of α-helix increases with increasing pressure. Extensions of these experiments to model proteins and lipids are presented.

Sanghoon Park
Department of Physics and College of Optics,
University of Central Florida

Date submitted: 27 Nov 2010 Electronic form version 1.4