Switching Experiments on a Current-Biased MgB$_2$ Josephson Junction1 ROBERTO RAMOS, JEROME MLACK, JOSEPH LAMBERT, STEVEN CARABELLO, Department of Physics, Drexel University — As the current through a Josephson junction is increased, the voltage across the junction switches from zero to a finite voltage. This is analogous to the escape of a phase particle originally oscillating with a plasma frequency ω in a washboard potential well, to the running state. We report results of our switching experiments on current-biased MgB$_2$/I/Pb thin film junctions through a broad range of sub-Kelvin temperatures. Our results exhibit features in the escape rate Γ suggestive of substructure within the pi gap of MgB$_2$, which is consistent with our recent work demonstrating substructure within the pi and sigma superconducting energy gaps of MgB$_2$. Upon irradiation of microwaves with frequencies resonant with the plasma frequency, we observe enhancement of escape rates, which is a clear demonstration of microwave resonant activation in these devices. By manipulating frequency and power, we demonstrate good control over the escape of the phase particle.

1We wish to thank Profs. Xiaoxing Xi and Ke Chen for providing high-quality MgB$_2$ Josephson junctions.

Roberto Ramos
Department of Physics, Drexel University

Date submitted: 19 Nov 2010

Electronic form version 1.4