Abstract Submitted
for the MAR11 Meeting of
The American Physical Society

Long-range in a system of thermal brownian particles
ALEXANDRO HEIBLUM, Posgrado Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, FRANCISCO SEVILLA, Instituto de Fisica, Universidad Nacional Autonoma de Mexico, VICTOR DOSSETTI, Instituto de Fisica, Benemerita Universidad Autonoma de Puebla — We present a model that exhibits an order-disorder phase transition in two spatial-dimensions. The model considers a collection of \( N \) thermal Brownian particles moving in a square of length \( L \) subjected to periodic boundary conditions and to velocity-alignment forces. The alignment force affects only the velocity direction in a way that it makes it equal to the velocity direction of the nearby group. Our results contrast with those obtained from the well known model of Vicsek et al. [Phys. Rev. Lett. 75, 1226 (1995)] where such a transition occurs out of equilibrium.

\(^1\text{We acknowledge support from PCF-PAEP and PAPIIT-IN117010}\)

Francisco J. Sevilla
Instituto de Fisica, Universidad Nacional Autonoma de Mexico

Date submitted: 07 Dec 2010

Electronic form version 1.4