Micelle Formation of Diblock Copolymer in a Thin Film Homopolymer: a Comparison with Polymer Brush-Coated Nanoparticles

HENGXI YANG, CHELSEA CHEN, PETER GREEN, University of Michigan — We investigated micelle formation of a diblock copolymer polystyrene-\textit{b}-poly(2-vinylpyridine) (PS-\textit{b}-P2VP) of degree of polymerization \textit{N}, in thin films of homopolymer polystyrenes (PS) of different degrees of polymerization \textit{P}, supported on substrates, and compared the results with the phase behavior of PS brush-coated Au nanoparticles in homopolymer PS matrix. PS-\textit{b}-P2VP copolymer chains aggregated to form micelles, composed of an inner P2VP core and an outer PS corona. The size of the micelle cores, \textit{D}_{\text{core}}, increased with increasing \textit{P}, and reached a plateau at very large \textit{P}. The transition occurred at a larger \textit{P}/\textit{N} than expected from brush-melt interaction theories. The organization of micelles at large \textit{P} regimes suggested attractions between micelles. P2VP block also adsorbed onto the substrate to form a brush layer and the surface adsorption process was affected by micellization of copolymers. We compared the micelle formation of PS-\textit{b}-P2VP in PS with the phase behavior of PS coated Au nanoparticle/PS mixtures: the host chains penetrate into the corona of the micelles more easily than into the PS brush grafted on the particle due to low “grafting density;” what’s more, micelles can self-adjust their aggregation number as the interaction between host chains and the corona changes.

Hengxi Yang
University of Michigan

Date submitted: 19 Nov 2010

Electronic form version 1.4