Abstract Submitted for the MAR11 Meeting of The American Physical Society

Role of the surface in writing, erasing and maintaining nanostructures at the LaAlO₃/SrTiO₃ interface¹ FENG BI, DANIELA F. BOGORIN, CHENG CEN, JEREMY LEVY, University of Pittsburgh, CHUNG WUNG BARK, JAE-WAN PARK, CHANG-BEOM EOM, University of Wisconsin-Madison — Nanoscale control of the metal-insulator transition in LaAlO₃/SrTiO₃ heterostructures can be achieved using local voltages applied by a conducting AFM probe. The mechanism is believed to be governed by a "water cycle" in which the surface is locally charged via hydrogen passivation, resulting in high-resolution modulation doping of the LaAlO₃/SrTiO₃ interface.² A Kelvin probe image method is applied to study how water content in the gas environment influences such charge writing. Persistence tests are performed, in which the long-term behavior is studied by keeping the AFM-written nanostructures (nanowire and sketch FET³) in different ambient environments. The self-erasure process is particularly obvious in moisture environments, but is slowed greatly in dry inert gas and can be even halted under modest vacuum conditions (~10⁻³ Torr).

¹Supported by National Science Foundation (DMR-0704022), DARPA seedling (W911NF-09-1-0258) and the Fine Foundation.
²F. Bi et al., Appl. Phys. Lett.97, 173110 (2010)
³C.Cen et al., Science, 323, 1026 (2009)

Feng Bi University of Pittsburgh

Date submitted: 27 Nov 2010

Electronic form version 1.4