From 3He to Xe: adsorption isotherms on the same batch of BuckyPearlsTM carbon nanotube bundles1 OSCAR VILCHES, EVAN MATTSON, KRISTINE KIM, DAVID COBDEN, University of Washington — We report a study of the adsorption of 3He, 4He, H$_2$, HD, D$_2$, Ne, Ar, N$_2$, Kr and Xe adsorbed on samples of BuckyPearlsTM, a form of HiPCo-typeTM carbon nanotube bundles, from the same batch used for neutron diffraction studies of the structure of 4He and Ne at low temperatures. For each gas, except 3He and 4He, we have measured three or more isotherms in a range of temperatures where we can observe the completion of both the three-line phase and the first layer. We can correlate the helium and hydrogen isotopes data and the Ne data with previous neutron and/or heat capacity measurements on BuckyPearls and HiPCo bundles. By taking ratios of monolayer completion coverage for the various gases to the N$_2$ monolayer completion coverage we can compare nanotube adsorption to adsorption on exfoliated graphite. Quantum effects on adsorption can be seen by comparing areas per atom or molecule to Lennard-Jones hard core radii.

1Work supported by NSF DMR 0907690

Marcel den Nijs
University of Washington-Seattle