Evaporative Self-Assembly and Formation of the Lyotropic Liquid Crystalline Phase of Poly(3-hexyl thiophene)1 MIN SANG PARK, AVISHHEK AIYAR, JUNG OK PARK, ELSA REICHMANIS, MOHAN SRINIVASARAO, Georgia Institute of Technology — In this study, we electrically and optically interrogated the evolution of the thin film structure in conjugated systems using poly(3-hexylthiphene) (P3HT) as a model semiconducting polymer. In an effort to understand the electrical properties of the conducting channel in terms of polymer chain orientation and relaxation in solution, we performed in-situ micro-Raman measurements using polarized incident light. We measured the extent of molecular chain alignment during the process of film formation and showed the existence of a lyotropic liquid crystal phase at the three-phase contact line. The variation of frequency dispersion and the shift of position for Raman active mode, combined with the structural anisotropy of P3HT films, suggest a phase transition to the lyotropic liquid crystalline phase. The orientational order of P3HT chains in the liquid crystalline phase was quantified as a function of evaporation time using solidified solvent, 1,3,5-trichlorobenzene (1,3,5-TCB).

1This work was supported, in part, by the Office of Basic Energy Science, Department of Energy, Grant No. DESC0001412 and by an NSF, Grant No. DMR0706235.

Min Sang Park
School of Material Science and Engineering, Georgia Institute of Technology

Date submitted: 27 Nov 2010
Electronic form version 1.4