Magnetic Thermal Hysteresis in Dy nanolayers AJANI ROSS, ALI KOYMEN, University of Texas Arlington — Magnetic thermal hysteresis is observed when the temperature dependent magnetic properties of a material are reliant on the starting point of the measurement. Trilayer samples of pure Dysprosium (Dy) and Gadolinium (Gd) were grown on substrates of glass (Gd\(_n\)/Dy\(_m\)/Gd\(_n\)), \(n\) and \(m\) constitutes the number of layers. We observed magnetic thermal hysteresis in these thin films at low values of constant external magnetic field strengths. The temperature is swept from 20K to 300K at constant field, then back (300K to 20K) under the same field. In these temperature sweeps differences in magnetic moment were observed near the low end of the temperature range. Experiments are being done, currently, to confirm the existence of alternate helicity (AH-state) and helical (H-state) states in these trilayer films, which are believed to be the cause of the observed thermal hysteresis according to theoretical calculations. In addition, the temperature dependence of entropy change for these samples is calculated.

Ajani Ross
University of Texas Arlington

Date submitted: 27 Nov 2010
Electronic form version 1.4