Field induced first order phase transition in the antiferromagnet \(\text{Yb}_3\text{Pt}_4 \)\(^1\) L.S. WU, Stony Brook University, Y. JANSSEN, M.S. KIM, Brookhaven National Lab, C. MARQUES, Stony Brook University & Brookhaven National Lab, K.S. PARK, M. BENNETT, Brookhaven National Lab, M.C. ARONSON, Stony Brook University & Brookhaven National Lab, S.X. CHI, J.W. LYNN, NIST Center for Neutron Research — \(\text{Yb}_3\text{Pt}_4 \) is an antiferromagnet that orders at \(T_N=2.4K \). Magnetic fields \(B \) suppress \(T_N \), and the \(B-T \) phase line \(T_N(B) \) terminates almost vertically at \(T=0, B_C=2.0 \ T \). Specific heat measurements find a mean-field transition at \(T_N(B) \), and the magnetocaloric effect shows that the antiferromagnetic transition is continuous at all fields, with no associated latent heat. However, neutron diffraction measurements performed for \(B\sim B_C \) find that a distinct step in the magnetization \(\Delta M \) occurs near the transition, with a magnitude that increases for \(T<1 \ K \). The field dependent magnetization \(M(B) \) similarly has a metamagnetic-like step at \(T_N(B) \) below 1 K, accompanied by a sharp peak in the susceptibility whose magnitude increases but does not diverge as \(T\to0 \). We argue that a nonzero magnetization step \(\Delta M \) is required to give \(\Delta S=0 \) for \(T=0 \), since the vertical phase line at \(T=0 \) implies \(dT_N/dB=-\Delta M/\Delta S\to-\infty \). We argue that \(T_N \) (\(B \)) terminates at \(B_C \) in a \(T=0 \) first order transition.

\(^1\)Research of Stony Brook is supported by NSF.

Liusuo Wu
Stony Brook University

Date submitted: 27 Nov 2010
Electronic form version 1.4