Abstract Submitted for the MAR11 Meeting of The American Physical Society

Single-Crystalline Germanium Nanowire Heterostructure for **High-Performance Transistors and Spintronics**¹ JIANSHI TANG, KANG L. WANG, Device Research Laboratory, Department of Electrical Engineering, University of California, Los Angeles, California, 90095, USA, CHIU-YEN WANG, LIH-JUANN CHEN, Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, 30013, Republic of China — The formation of single-crystalline Ni₂Ge/Ge/Ni₂Ge nanowire heterostructure and its field effect characteristics by controlled reaction between a Ge nanowire and Ni contacts were studied. Transmission electron microscopy (TEM) studies reveal a wide temperature range to convert the Ge nanowire to single-crystalline Ni₂Ge by a thermal diffusion process. The *in-situ* reaction examined by TEM shows atomically sharp interfaces for the Ni₂Ge/Ge/Ni₂Ge heterostructure with good epitaxial matches of $Ge[-110]/Ni_2Ge[0-11]$ and $Ge(111)/Ni_2Ge(100)$. Field effect transistors (FETs) built on this nanowire heterostructure show a high-performance p-type FET behavior with an on/off ratio over 10^5 and a field-effect hole mobility of $210 \text{ cm}^2/\text{Vs}$. This nanowire heterostructure with atomically sharp interfaces opens an opportunity to achieve high-performance nanowire transistors and explore promising application in spintronics.

¹The work was supported in part by FCRP-FENA (Functional Engineered Nano Architectonics)

Jianshi Tang Device Research Laboratory, Dept of Electrical Engineering, University of California, Los Angeles, California, 90095, USA

Date submitted: 27 Nov 2010

Electronic form version 1.4