La_{0.7}\text{Sr}_{0.3}\text{MnO}_3 \text{ Epitaxial Films on SrTiO}_3(001): \text{ Interface Effects & Electronic Distribution}

J.-S. LEE, D.A. ARENA, National Synchrotron Light Source, Brookhaven National Lab, C.-C. KAO, Stanford Synchrotron Radiation Light Source, SLAC, P. YU, Dept. of Physics, UC-Berkeley, R. RAMESH, Dept. of Physics, UC-Berkeley and Mater. Sci. Div., LBNL — La_{1-x}\text{Sr}_x\text{MnO}_3 \text{ is an attractive material for incorporation into spin-dependent electronic devices and optimally doped La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3 \text{ (LSMO) is among the most widely studied colossal magnetoresistance materials. Using a combination of soft x-ray absorption spectroscopy and hard x-ray reflectivity, we found that epitaxial films of LSMO grown on STO(001) substrates exhibit an inhomogeneous 3d electron-distribution along surface normal direction, divided between an intermediate layer (enriched in Mn}^{3+} \text{) and a nominal mixed-valence layer (Mn}^{3+} \text{ & Mn}^{4+} \text{) of LSMO. This electronic redistribution near the interface is in turn correlated with an unusual remanent magnetic state.}

Jun-Sik Lee
National Synchrotron Light Source, BNL

Date submitted: 19 Nov 2010
Electronic form version 1.4