Fast evaluation of multideterminant wavefunctions in quantum Monte Carlo1 MIGUEL A. MORALES, LLNL, BRYAN K. CLARK, Princeton, JEREMY MCMINIS, JEONGNIM KIM, UIUC, GUSTAVO SCUSERIA, Rice Univ. — Quantum Monte Carlo (QMC) methods such as variational and diffusion Monte Carlo depend heavily on the quality of the trial wave function. Although Slater-Jastrow wave functions are the most commonly used variational ansatz, more sophisticated wave functions are critical to ascertaining new physics. One such wave function is the multislater-Jastrow wave function which consists of a Jastrow function multiplied by the sum of slater determinants. In this talk we describe a method for working with these wave functions in QMC codes that is easy to implement, efficient, and easily parallelized. The algorithm computes the multi determinant ratios of a series of particle hole excitations in time $O(n^2)+O(n_s n)+O(n_e)$ where n, n_s, and n_e are the number of particles, single particle excitations, and total number of excitations, respectively. This is accomplished by producing a (relatively) compact table that contains all the information required to read off the excitation ratios. In addition we describe how to compute the gradients and laplacians of these multi determinant terms.

1This work was performed under the auspices of: the US DOE by LLNL under Contract DE-AC52-07NA27344, the US DOE under Contract DOE-DE-FG05-08OR23336 and by NSF under No.0904572.

Miguel A. Morales
LLNL

Date submitted: 19 Nov 2010 Electronic form version 1.4