Electrostatic Origin of Meandering C60 Chain Formation at ZnPc Interfaces1 JANICE REUTT-ROBEY, QIANG LIU, LEVAN TSKIPURI, WEI JIN, JOHN WEEKS, University of Maryland, DANIEL DOUGHERTY, NC State University, STEVE ROBEY, NIST — We present STM investigations of interface-formation and nanophase separation in binary films of zinc phthalocyanine (ZnPc) and C\textsubscript{60} on Ag(111) and Au(111) supports. We report ZnPc:C\textsubscript{60} 1-D and 2-D interfaces with distinctive molecular orientations and unusually low C\textsubscript{60} packing densities. Meandering C\textsubscript{60} chains of single-molecular width arise without registration to the underlying ZnPc template, islanding into a disordered chain phase. These structures are reminiscent of dipole fluids (albeit of single molecular widths!) We present detailed measurements and analysis of C\textsubscript{60} wandering chain formation on ZnPc/Ag (111) and ZnPc/Au (111) substrates. We explore the physical origin of these structures through simulations with a model potential that incorporates short-range C\textsubscript{60} – C\textsubscript{60} attraction and a long-range dipolar repulsion. From simulations of realized structures, we estimate the effective dipole needed for chain formation. DFT calculations on the C60/ZnPc/Ag(111) structure support these conclusions and provide more detailed insight on the electrostatic interactions that drive chain formation.

1This work has been supported by the UMD MRSEC (DMR 0520471) and NSF Surface and Analytical Chemistry(CHE0750203).