Formation of Nanoparticle Stripe Patterns via Flexible-Blade Flow Coating
DONG YUN LEE, HYUN SUK KIM, CASSANDRA PARKOS, CHEOL HEE LEE, TODD EMRICK, ALFRED CROSBY
We present the controlled formation of nanostripe patterns of nanoparticles on underlying substrates by flexible-blade flow coating. This technique exploits the combination of convective flow of confined nanoparticle solutions and programmed translation of a substrate to fabricate nanoparticle-polymer line assemblies with width below 300 nm, thickness of a single nanoparticle, and lengths exceeding 10 cm. We demonstrate how the incorporation of a flexible blade into this technique allows capillary forces to self-regulate the uniformity of convective flow processes across large lateral lengths. Furthermore, we exploit solvent mixture dynamics to enhance intra-assembly particle packing and dimensional range. This facile technique opens up a new paradigm for integration of nanoscale patterns over large areas for various applications.