Ionic Liquids for the Imaging of Wet Polymer Morphology

DAVID HOAGLAND, JOHN HARNER, MALVIKA BIHARI, Univ. of Massachusetts Amherst — Unlike convention aqueous and organic solvents, ionic liquids are essentially nonvolatile and thus compatible with the high vacuum environments of electron microscopy. Here is described the room temperature imaging of wet polymer systems such as patterned gels, gel networks, polymeric vesicles, and proteins. Both TEM and SEM images will be offered, along with a discussion of difficulties in applying the two techniques. Via SEM, imprinted surface structures as small as 100-300 nm can be captured for chemically crosslinked gels (polyHEMA), and via TEM, the structure of a physical gel (PEG) is viewed at the 50-to-10-nm scale, revealing network connectivity established by PEG crystallinity. Self-assembled vesicle and micelle structures will be presented for dispersed block copolymers, and the same approach will be applied toward discerning the quality of dispersion for proteins (ferritin) and other nanoparticles.

1Funding: UMass MRSEC