Abstract Submitted for the MAR11 Meeting of The American Physical Society

Influence of Polymeric Residue on the Thermal Conductivity of Suspended Bi-Layer Graphene¹ MICHAEL PETTES², Department of Mechanical Engineering, The University of Texas at Austin, Austin, Tx, INSUN JO³, ZHEN YAO, Department of Physics, The University of Texas at Austin, Austin, Tx, LI SHI⁴, Department of Mechanical Engineering, The University of Texas at Austin, Austin, Tx — The thermal conductivity (κ) of two bi-layer graphene samples suspended between two micro-resistance thermometers was measured to be close to 600 W m⁻¹ K⁻¹ at room-temperature and exhibits a $\kappa \propto -T^{1.5}$ behavior at temperature (T) between 50 – 125 K. The lower thermal conductivity than the basal plane values of graphite and the temperature dependence are attributed to scattering of phonons in the bi-layer graphene by a residual polymeric layer that was clearly observed by transmission electron microscopy.

¹This work was supported by the U.S. Department of Energy award DE-FG02-07ER46377 and the National Science Foundation Graduate Research Fellowship Program (M.T.P.).

²These authors contributed equally.

³These authors contributed equally.

 4 Corresponding Author, lishi@mail.utexas.edu.

Michael Pettes Department of Mechanical Engineering, The University of Texas at Austin, Austin, Tx

Date submitted: 28 Nov 2010

Electronic form version 1.4