Electrical noise in graphene FETs

NAN SUN, KRISTOF TAHY, GERALD ARNOLD, DEBDEEP JENA, HUILI XING, STEVEN RUGGIERO,
University of Notre Dame, DEPARTMENT OF PHYSICS TEAM, DEPARTMENT OF ELECTRICAL ENGINEERING COLLABORATION — We report on the low-frequency electrical noise measured in graphene FETs. Samples were created by e-beam lithography using both exfoliated graphene and epitaxial graphene films on SiC. The observed 1/f noise varies as a function of gate bias, where the noise amplitude follows Hooge’s empirical relation ($S_V \sim 1/N$), and the noise spectrum deviates from 1/f behavior at low carrier densities. We discuss this behavior in the context of a model including random telegraph noise generated by slow traps.