Thermoelectric Properties and Microstructure of Ca₃Co₄O₉ thin films on SrTiO₃ and Al₂O₃ Substrates

T. PAULAUSKAS, Q. QIAO, A. GULEC, R.F. KLIE, UIC, M. OZDEMIR, C. BOYRAZ, D. MAZUMDAR, A. GUPTA, UA — Ca₃Co₄O₉ (CCO), a misfit layered structure exhibiting large Seebeck coefficient at temperatures up to 1000K has attracted increasing attention as a novel high-temperature thermoelectric material. In this work, we investigate CCO thin films grown on SrTiO₃ (001) and Al₂O₃ (0001) using pulsed laser deposition. Quality of the thin films was examined using high-resolution transmission electron microscopy and thermoelectric transport measurements. HRTEM images show incommensurate stacks of CdI₂-type CoO₂ layer alternating with rock-salt-type Ca₂CoO₃ layer along the c-axis. Perovskite buffer layer about 10nm thick was found present between CCO and SrTiO₃ accompanied by higher density of stacking faults. The CCO grown on Al₂O₃ exhibited numerous misoriented grains and presence of CaₓCoO₂ phase. Seebeck coefficient measurements yield an improvement for both samples compared to the bulk value. We suggest that thermoelectric properties of CCO increase due to additional phonon scattering at the stacking faults as well as at the film surfaces/interfaces.

¹This research was supported by the US Army Research Office (W911NF-10-1-0147) and the Sivananthan Undergraduate Research Fellowship.