Abstract Submitted
for the MAR11 Meeting of
The American Physical Society

The role of donor-acceptor intermixing in the performance of polymer-polymer OPVs ELENI PAVLOPOULOU, STEPHANIE LEE, CHANG SU KIM, YUEH-LIN LOO, Department of Chemical and Biological Engineering, Princeton University, ZHIHUA CHEN, ANTONIO FACCHETTI, Polyera Corporation, MICHAEL F. TONEY, Stanford Synchrotron Radiation Light-source — We investigated the effect of donor-acceptor intermixing in bulk-heterojunction active layers on device performance of polymer-polymer organic photovoltaics (OPVs). Poly(3-hexylthiophene) (P3HT) was blended with poly{[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,59-(2,29-bithiophene)} (PNDI) and P3HT/PNDI films were spin-cast from dichlorobenzene, a good solvent for PNDI; chlorobenzene, a good solvent for P3HT; and xylene, a bad solvent for both. The short-circuit current densities and device efficiencies vary with casting solvent quality; devices with active layers cast from xylene exhibit the highest efficiencies while those cast from dichlorobenzene the lowest. Grazing Incidence X-ray Diffraction show that intermixing on a molecular scale increases with decreasing dissolution of the polymers in the parent solutions. Accordingly, increasing intermixing enhances device efficiencies.

Eleni Pavlopoulou
Department of Chemical and Biological Engineering, Princeton University

Date submitted: 19 Nov 2010

Electronic form version 1.4