Measurements of the critical current of small Sr$_2$RuO$_4$ crystals

YIQUN YING, NEAL STALEY, YING LIU, Department of Physics, The Pennsylvania State University, YAN XIN, National High Magnetic Field Laboratory, Florida State University, DAVID FOBES, TIJIANG LIU, ZHIQIANG MAO, Department of Physics, Tulane University — We report critical current measurements of chiral p-wave superconductor Sr$_2$RuO$_4$. Because of the strong anisotropy possessed by Sr$_2$RuO$_4$, vortex lines along the in-plane direction are expected to be pinned more strongly than those along the c axis, resulting in anisotropic critical currents. We prepared small single crystals of Sr$_2$RuO$_4$ with a typical size of 50μm \times 10μm \times 1μm by mechanical exfoliation and characterized them by Raman spectroscopy and high-resolution transmission electron microscopy, showing that they were either pure Sr$_2$RuO$_4$ or eutectic phase containing one or more Ru microdomains. Four-point or Hall probes were prepared on the small crystals by photo lithography. While samples of pure Sr$_2$RuO$_4$ exhibited a typical transition temperature (T_c) of 1.2K, slightly lower than the optimal bulk T_c, 1.5K, those with Ru microdomains showed multiple resistive transitions with the highest T_c around 2K. The critical current and critical field phase diagrams were determined for these small crystals. Surprisingly, the in-plane critical current density, measured for the first time, was found to be significantly larger than that along c-axis of the bulk. The physical implications of these observations will be discussed. Supported by DOE.

Yiqun Ying
Department of Physics, The Pennsylvania State University

Date submitted: 19 Nov 2010