Electronic instabilities at paraelectric and superconducting interface: A mean field approach J.T. HARALDSEN, A.V. BALATSKY, Theoretical Division, Los Alamos National Laboratory and Center for Integrated Nanotechnologies, Los Alamos, NM 87545 — We examine the modified electronic states at the interface between superconducting and ferro(para)-electric films. We find that the coupling of a classical fluctuating paraelectric P and superconducting ψ order parameters can significantly modify these orders at the interface. Using a Ginzburg-Landau formalism, we show that linear and quadratic terms of the electric polarization produce instabilities in ψ at the interface, where the linear interaction produces a modulation of the order parameters and create an interface-induced ferroelectric polarization within the paraelectric bulk state. We will discuss implications of this work for the experiments on the epitaxial oxide films.

1Work was carried out under the help and support of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.