Abstract Submitted
for the MAR11 Meeting of
The American Physical Society

Post-stishovite transition in AlOOH-incorporated SiO$_2$

KATSUYUKI KAWAMURA, Tokyo Institute of Technology, KOICHIRO UMEMOTO, RENATA WENTZCOVITCH, University of Minnesota, KEI HIROSE, Tokyo Institute of Technology — In 2007, Lakshtanov et al. [Proc. Nat. Acad. Sci. 104, 13588 (2007)] showed that the incorporation of AlOOH into SiO$_2$ significantly reduces the transition pressure between stishovite and CaCl$_2$-type phases. In the present paper, we investigate theoretically the effect of hydrogen and aluminum on this transition. First-principles calculations show that aluminum has no effect on the transition pressure. However, hydrogen bonds play a crucial role, suggesting that a cooperative redistribution of hydrogens aids the post-stishovite transition. Large-scale molecular dynamics simulations using model potentials confirm this effect and reveal the nature of the hydrogen motion. This effect produces a strong temperature dependence on the transition pressure and should make the latter sensitive to hydrogen content in the material.

This work was supported by NSF under ATM-0428774 (VLab), EAR-0757903, and EAR-1019853. The computations were performed at the Minnesota Supercomputing Institute (MSI).

Koichiro Umemoto

Date submitted: 19 Nov 2010

Electronic form version 1.4