Characterizing the Structure and Porosity of Organic Molecules of Intrinsic Microporosity by Molecular Simulations and Experiment

LAUREN J. ABBOTT, AMANDA G. MCDERMOTT, Penn State University, ANNALURA DEL REGNO, University of Manchester, KADHUM J. MSAYIB, MAR- IOLINO CARTA, RUPERT TAYLOR, NEIL B. MCKEOWN, Cardiff University, FLOR R. SIPERSTEIN, University of Manchester, JAMES RUNT, CORAY M. COLINA, Penn State University — Organic molecules of intrinsic microporosity (OMIMs) are amorphous, glassy solids that contain interconnected pores of sizes smaller than 2 nm. The philosophy behind OMIMs is similar to that of polymers of intrinsic microporosity (PIMs); rigid, awkwardly shaped molecules frustrate packing and form low density materials with intrinsically porous structures. Atomistic simulations were performed on OMIMs using our recently developed packing and compression procedure to study the effect of structure on packing behavior. The structure and porosity of the simulated samples were characterized, such as by surface areas and structure factors, and compared to experimental results. The presented computational procedure will further understanding of structure-property relationships and aid in the design of novel materials with high surface areas.

Supported by NSF/Materials World Network/EPSRC.