Surface magnetization of a multiferroic with linear M-to-P coupling: The case of FeTiO$_3$

JAMES GLASBRENNER, KIRILL BE-LASHCHENKO, University of Nebraska-Lincoln — A multiferroic material with linear coupling between the magnetization M and electric polarization P could serve as an electric switch of magnetization. However, for applications it is necessary to couple its magnetization to a proximate ferromagnet through exchange bias at the interface. Symmetry considerations indicate that multiferroics with linear M-to-P coupling should also have a boundary magnetization, which is not directly coupled to P but is rather determined by the surface normal direction. This magnetization can present an obstacle for electric switching of exchange bias. Here we investigate the (001) surface magnetization of LiNbO$_3$-type FeTiO$_3$ using first-principles PAW calculations with spin-orbit coupling. The surface magnetization appears through spin canting of the surface moments. This canting is found for different surface terminations and compared with the bulk behavior.

Kirill Belashchenko
University of Nebraska-Lincoln

Date submitted: 30 Nov 2010
Electronic form version 1.4