Cryogenic Scanning Tunneling Spectroscopy of Superconducting Iron Chalcogenide Single Crystals1 J.Y.T. WEI, IGOR FRIDMAN, University of Toronto and Canadian Institute for Advanced Research, KUO-WEI YEH, MAW-KUEN WU, Institute of Physics, Academia Sinica, Taiwan, RONGWEI HU2, C. PETROVIC, Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory — We report scanning tunneling spectroscopy measurements on the iron-based superconductors of the “11” family including Fe\textsubscript{1−y}Te\textsubscript{1−x}Se\textsubscript{x} and Fe\textsubscript{1−y}Te\textsubscript{1−x}S\textsubscript{x}. Conductance spectra and atomically-resolved images are obtained on single crystals down to 300 mK. A gap-like structure is observed, showing an asymmetric spectral background, non-trivial spatial variation and temperature dependence. We discuss our data in terms of possible gap anisotropy and doping inhomogeneities, and in relation to other recent spectroscopic measurements on iron-based superconductors.

1Work supported by NSERC, CFI/OIT, CIFAR, Taiwan National Science Council, U.S. DOE and Brookhaven Science Associates (No. DE-Ac02-98CH10886), and in part by the Center for Emergent Superconductivity, an Energy Frontier Research Center.

2Present address: Ames Laboratory and Iowa State University

J.Y.T. Wei
University of Toronto