Abstract Submitted for the MAR11 Meeting of The American Physical Society

Structure and electronic properties of the La₄Ni₃O₈ KONSTANTIN LOKSHIN, TAKESHI EGAMI, University of Tennessee — The Ni¹⁺/Ni²⁺ states of nickelates have the identical $(3d^9/3d^8)$ electronic configuration as Cu²⁺/Cu³⁺ in the high temperature superconducting cuprates, and are expected to show interesting properties. However, La₄Ni₃O₈, has infinite NiO₂ layers with Ni valence 1.33 and demonstrate a magnetic transition at 105 K, which has not been explained unambiguously yet. Here we report X-rays and Neutron diffraction evidences clarifying the nature of the transition. The observed structural changes around 105 K suggest that the magnetic transision in La₄Ni₃O₈ originates from Yahn Teller effect that accompanies with high spin – low spin transition. Thus, at low temperature the structural motive, electronic configuration and the spin state of Ni¹⁺/Ni²⁺ nicke-lates are identical to Cu²⁺/Cu³⁺ cuprates.

Konstantin Lokshin University of Tennessee

Date submitted: 28 Nov 2010

Electronic form version 1.4