Abstract Submitted for the MAR11 Meeting of The American Physical Society

Properties of layered iron oxychalcogenides with checkerboard structure¹ LIANG L. ZHAO, DANIEL WARD, DOUGLAS NATELSON, EMILIA MOROSAN, Department of Physics and Astronomy, Rice University, Houston TX 77005 — The layered iron oxychalcogenides La₂O₃Fe₂X₂ (X = S, Se) have a unique checkerboard-like Fe₂OX₂ sublattice. Their Mott insulating behavior makes them promising candidates for novel superconductors. In this talk, we present results on the isostructural $A_2F_2Fe_2OS_2$ (A = Sr, Ba) compounds. Both pure and doped samples are characterized by magnetization, resistivity, heat capacity and Raman spectroscopy measurements. In addition to the previously reported antiferromagnetic transition around $T_N \approx 100$ K, we observed another phase transition in the ordered state, as well as a possible structural phase transition near room temperature. A change in the excitation gap at the high temperature (structural) phase transition is indicated by the temperature dependent resistivity.

¹This work is supported by AFOSR-MURI

Liang Zhao Department of Physics and Astronomy, Rice University, Houston TX 77005

Date submitted: 19 Nov 2010 Electronic form version 1.4