Single-Walled Carbon Nanotubes in Epoxy – Investigating Behavior under Strain and Alignment Using Fluorescence Spectroscopy

TAMIKA THOMAS, KENA SENEGAL, SARENA SENEGAL, PAUL WITHEY, Northwestern State University, SERGEI BACHILO, R. BRUCE WEISMAN, Rice University — Single-walled carbon nanotubes (SWCNTs) have been successfully embedded into EPON 862/W epoxy both with and without a surfactant. Applying strain to the nanocomposite permitted the interfacial adhesion between the SWCNT and host to be studied at the single-particle level using near-infrared fluorescence spectroscopy. Load transfer from the host to an embedded CNT is clearly observed as a shift in the nanotube’s spectral emission. Loss of adhesion, or slipping, is also detected. Attempts at enhancing CNT-alignment within the nanocomposite will also be discussed. Near-infrared fluorescence imaging and spectroscopy prove to be ideal methods for monitoring the behavior of SWCNTs within nanocomposites, especially at the single-particle level. Much of this work has been carried out by undergraduate physics and chemistry majors.

Support from the Air Force Minority Leaders Program and generous use of facilities in the lab of Dr. R. Bruce Weisman at Rice University are gratefully acknowledged.