Abstract Submitted
for the MAR11 Meeting of
The American Physical Society

Calculated Electronic Properties of Rutile TiO$_2$ and Cubic SrTiO$_3$

CHINEDU EKUMA, Louisiana State University, Baton Rouge, LA, DIOLA BAGAYOKO, Southern University and A&M College, Baton Rouge, LA — We present preliminary, calculated, electronic properties of rutile titanium dioxide (TiO$_2$) and of cubic strontium titanate (SrTiO$_3$). Our computations employed local density approximation (LDA) and generalized gradient Approximation (GGA) potentials for TiO$_2$ and SrTiO$_3$, respectively. We implemented the linear combination of atomic orbitals (LCAO) within the framework of the Bagayoko, Zhao, and Williams (BZW) method. In doing so, we solved, self-consistently, both the Kohn-Sham equation and the equation giving the ground state charge density in terms of the wave functions of the occupied states. Our preliminary findings indicate that TiO$_2$ has an indirect band gap of 2.95 eV, from Γ to R. The direct gap at Γ is 0.10 eV larger. The indirect band gap of SrTiO$_3$, from L to Γ or X, is 3.05 eV.

Work funded in part by the Louisiana Optical Network Initiative (LONI), the National Science Foundation (NSF) and the Louisiana Board of Regents [Award Nos. EPS-1003897 and NSF (2010-15)-RII-SUBR], and and Ebonyi State, Federal Republic of Nigeria [Award No: EBSG/SSB/FSA/040/VOL. VIII/039]

Chinedu Ekuma
Louisiana State University, Baton Rouge, LA

Date submitted: 28 Nov 2010