First-principles modeling of Li-air battery materials

MAXWELL RADIN, Mechanical Engineering Department, University of Michigan, DONALD SIEGEL, Department of Physics, University of Michigan — Of the many possible battery chemistries, the so-called “Li-air” system is noteworthy in that its theoretical capacity (∼5 kWh/kg, including mass of oxygen) exceeds that of any electrochemical system. Perhaps more importantly, the simplified composition of its air cathode – involving only the inlet of oxygen from the atmosphere – has the potential to provide cost benefits in comparison to the Li-ion systems of today. Although the first rechargeable Li-air battery was demonstrated by Abraham and Jiang 14 years ago, its performance in many dimensions remains poor, and relatively little computational work has been done to elucidate performance-limiting phenomena. This talk will introduce the basic properties and main performance issues associated with Li-air batteries. Opportunities for first-principles modeling to assist in overcoming these obstacles will be highlighted.

Donald Siegel
Mechanical Engineering Department, University of Michigan

Date submitted: 09 Dec 2010