Increased hydrogen uptake of MOF-5 by powder densification

DONALD SIEGEL, JUSTIN PUREWAL, Mechanical Engineering Department, University of Michigan, DONG’AN LIU, ANDREA SUDIK, JUN YANG, Ford Motor Company, STEFAN MAURER, ULRICH MULLER, BASF SE — The metal-organic framework MOF-5 has attracted significant attention due to its ability to store large quantities of H₂ by mass, up to 10 wt.% absolute at 70 bar at 77K. On the other hand, since MOF-5 is typically obtained as a bulk powder, it exhibits a low volumetric density and poor thermal conductivity—both of which are undesirable characteristics for a hydrogen storage material. Here we explore the extent to which powder densification can overcome these deficiencies, as well as to characterize the impact of densification on crystallinity, pore volume, surface area, and crush strength. MOF-5 powder was processed into cylindrical tablets with densities up to 1.6 g/cm³ by mechanical compaction. We find that optimal hydrogen storage properties are achieved for $\rho \sim 0.5$ g/cm³, yielding a 350% increase in volumetric H₂ density with only a modest 15% reduction in gravimetric H₂ excess in comparison to the powder. Higher densities result in larger reductions in gravimetric excess. Total pore volume and surface area decrease commensurately with the gravimetric capacity, and are linked to an incipient amorphization transformation. Nevertheless, a large fraction of MOF-5 crystallinity remains intact in densities up to 0.75 g/cm³, as confirmed from powder XRD.