"Quantum-Computing" (Q-C) = Simple-Arithmetic Since Digits = Quanta/Bosons Via Algebraic-INVERSION 1881 (<1901-05-25) of Digits On-Average Logarithmic-Law = ONLY BEQS!!! E. I. PI, EDWARD CARL-LUDWIG SIEGEL, FUZZYICS=CATEGORYICS(SON OF TRIZ) — Digits’ (On Average) Newcomb(1881)-Weyl(1914)-Benford(1938) "NeWBe" Logarithmic-Law \(<P> = \log_{10}(1 + 1/d) = \log_{10}((d + 1)/d) \) Siegel [Abs.973-60-124, AMS Nat.Mtg.(2002)] INVERSION to ONLY Bose-Einstein quantum-statistics(BEQS) \(d = 1/[10^{<P>}-1] \sim 1/\exp(<P>-1) \sim 1/\exp(<w>-1) \sim 1/1+<w>...-1 \sim 1/\exp(w)-1 \sim \frac{1}{1+<w>} \) Archimedes’ Zipf-law HYPER-BOLICITY ("noise" \sim "generalized-susceptibility") power-spectrum INEVITABILITY with gapFUL BEC to digit \(d = 0 \), \(<P(0)> = oo \), \(GAP = [<P(0)>=oo]-[<P(1)>=0.32]=oo \) has deep meaning for (so called) Q-C. Identification of digits(BCE) as quanta(1901-05 ACE) because quanta are/always were digits: energy-levels: ground-state \(d=0 \), first excited-state \(d=1 \),..., with no intermediate/fractional-levels, separated by quantum: \(Q = (d=1)-(d=0) = 1 \) means (on average any/all simple arithmetic computations with digits are ab initio by definition Q-C. Example: a blank-check is a BEC of digits \(d=0 \); writing some non-zero digits \(d>0 \), then signing check, is quantum-excitation from \(d=0 \) to \(d>0 \). Thus (so called) Q-C has existed since man learned to count/manipulate hand’s digits. Simple arithmetic(except for: division; factoring with remainders) is/has been from time immemorial (on average) "Q-C"!!!

Edward Carl-Ludwig S
FUZZYICS=CATEGORYICS(SON OF TRIZ)

Date submitted: 20 Nov 2010