Electron affinities of d1 transition metal chloride clusters and onset of super halogen behavior

SWAYAMPRABHA BEHERA, JORLY JOSEPH, PURUSOTTAM JENA, VCU — Geometry, electronic structure, and electron affinity of d1 transition metal chloride clusters (MClₙ, M = Sc, Y, La; n = 1–5) have been calculated using density functional theory. Chlorine atoms are chemically bound in all cases except for MCl₅. The electron affinities of MClₙ (n = 1–3) are small and increase only marginally as a function of n until the valence of the metal atom is consumed. Beyond this, they rise sharply and reach a value of 5.96, 6.03 and 5.90 eV for ScCl₄, YCl₄ and LaCl₄, respectively and remain high for n = 5. MClₙ, (n = 4,5) clusters, therefore, behave as superhalogens. Results are compared with available experimental data.