MAR11-2010-020077

Abstract for an Invited Paper for the MAR11 Meeting of the American Physical Society

The Exceptional Properties of Superconductivity in Cuprates

K.A. MUELLER, Physics Institute, University of Zurich, Switzerland

Copper oxides are the only materials that have transition temperatures, T_c , above the boiling point of liquid nitrogen, with a maximum T_c^m of 162 K under pressure. Their structure is layered, with one to several CuO₂ planes, and upon hole doping, their transition temperature follows a dome-shaped curve with a maximum at T_c^m . In the underdoped regime, i.e., below T_c^m , a pseudogap T^* is found, with T^* always being larger than T_c , a property unique to the copper oxides [1]. In the superconducting state, Cooper pairs (two holes with antiparallel spins) are formed that exhibit coherence lengths on the order of a lattice distance in the CuO₂ plane and one order of magnitude less perpendicular to it. Their macroscopic wave function is parallel to the CuO₂ plane near 100% d at their surface, but only 75% d and 25% s in the bulk, and near 100% s perpendicular to the plane in YBCO. There are two gaps with the same T_c [2]. As function of doping, the oxygen isotope effect is novel and can be quantitatively accounted for by a two-band vibronic theory [3]. These cuprates are intrinsically heterogeneous in a dynamic way. In terms of quasiparticles, bipolarons are present at low doping, and aggregate upon cooling [1], so that probably ramified clusters and/or stripes are formed, leading over to a more Fermi-liquid-type behavior at large carrier concentrations above T_c^m .

- [1] For an overview, see: K.A. Müller, J. Phys: Condens.Matter 19, 251002 (2007).
- [2] R. Khasanov, A. Shengelaya et al., Phys. Rev.Lett. 98, 0570007 (2007).
- [3] H. Keller, A. Bussmann-Holder, and K.A. Müller, Materials Today 11, 38 (2008).