Magnetocaloric Properties of Thin Film Heterostructures1 H. KIRBY, C. BAUER, University of South Florida, Department of Physics, B.J. KIRBY, J. LAU, NIST, C.W. MILLER, University of South Florida, Department of Physics — In an effort to understand the impact of nanostructuring on the magnetocaloric (MC) effect, we have studied gadolinium in MgO/W(50 Å)/[Gd(400 Å)/W(50 Å)]8 heterostructures [Miller et al., J. Appl. Phys. 107, 09A903 (2010)]. The entropy change peaks at a temperature of 284 K with a value of 3.4 J/kg K for a 0–30 kOe field change. Polarized neutron reflectometry was used to determine the depth profile of the magnetic moment per Gd atom, m_{Gd}, in a Gd/W multilayer. Our results suggest that creating materials with Gd-ferromagnet interfaces may increase the m_{Gd}, leading to enhanced MC properties. Therefore SiO\textsubscript{x}/Fe(50 Å)/Gd(300 Å)/Fe(50 Å) heterostructures have been investigated.

1This work was supported by AFOSR-YIP. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Hillary Kirby
University of South Florida, Department of Physics

Date submitted: 06 Jan 2011

Electronic form version 1.4