MOCVD Growths of Linearly-Shaped Staggered InGaN Quantum Wells Light-Emitting Diodes

HONGPING ZHAO, JING ZHANG, TAKAHIRO TOMA, GUANGYU LIU, JONATHAN POPLAWSKY, VOLKMAR DIEROLF, NELSON TANSU, Lehigh University — High-efficiency InGaN-based quantum wells (QWs) light-emitting diodes (LEDs) play an important role in solid state lighting. However, the existence of both spontaneous and piezoelectric polarization fields in III-Nitride semiconductors leads to severe charge separation in InGaN QWs, which significantly reduces the electron-hole wavefunction overlap ($\Gamma_{e,h}$) in InGaN QWs. In this work, the growths of linearly-shaped (LS) staggered InGaN QWs LEDs are investigated. The InGaN QWs with LS staggered In-content profile were grown by metalorganic chemical vapor deposition (MOCVD). The use of LS staggered In-contents in InGaN QWs results in improved electron-hole wavefunction overlap ($\Gamma_{e,h}$), in comparison to that of conventional InGaN QW. The power dependent cathodoluminescence (CL) measurement shows 2.5-3.5 times enhancement of CL intensity for LS staggered InGaN QWs as compared to that of the conventional InGaN QWs. Theoretical calculations using self-consistent 6-band k.p method were performed for both LS staggered InGaN QWs and conventional InGaN QWs. The experimental measurements show good agreement with the theoretical simulation.

Hongping Zhao
Lehigh University

Date submitted: 03 Dec 2010
Electronic form version 1.4