Abstract for an Invited Paper
for the MAR11 Meeting of
The American Physical Society

Search for Topological Insulators in Ternary Chalcogenides

CHAOXING LIU, Physikalisches Institut EP3, Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg

A topological insulator (TI) is a novel quantum state, which is a bulk insulator but has gapless surface states. Recently, binary chalcogenides, Bi2Te3, Bi2Se3 and Sb2Te3 have been theoretically predicted and experimentally observed to be a family of TIs [1]. In this talk, we extend our search of TIs to ternary chalcogenides by replacing some of Bi or Sb atoms by other atoms, such as thallium and rare earth atoms. It is found that for thallium-based materials [2], only TlSbS2 is trivial and all the others are TIs, while for rare earth-based materials [3], LaBiTe3 is a TI and the others are trivial. The search in ternary chalcogenides not only bring new members of TIs in the family of chalcogenides but also may provide candidates for other new topological states such as topological superconductor, quantum anomalous Hall insulator, axionic insulator and topological Kondo insulator.

Reference:

1Here I acknowledge the financial support by the Alexander von Humboldt Foundation of Germany.