Predicting Sommerfeld coefficients for heavy-fermion materials
MUNEHISA MATSUMOTO, SERGEY SAVRASOV, UC Davis, JUNYA OTSUKI, Tohoku University, Japan — From electronic-structure calculation standpoint we predict the appearance of heavy-fermion behavior for Cerium and Plutonium-based materials. Local-density approximation (LDA) combined with dynamical-mean field theory (DMFT) formulated for localized f-electrons gives an efficient realistic Kondo-lattice description [1] for the target materials, yielding a quasiparticle renormalization factor z_c for conduction electrons. We invert the data to get the quasiparticle renormalization factor z_f for f-electrons, and restore the effective total density of states to predict the Sommerfeld coefficient γ. Summarizing our data on an analogous “Doniach phase diagram” plotted for z_c, z_f, and γ, γ is found to have a peak around the magnetic quantum critical point and Ce-115’s are found to have the largest γ’s among target materials.