Abstract Submitted for the MAR12 Meeting of The American Physical Society

Semiconducting (Half-Metallic) Ferromagnetism in Mn(Fe) Substituted Pt and Pd Nitrides SAMIR MATAR, ICMCB-CNRS, Université de Bordeaux, France, VOLKER EYERT, www.materialsdesign.com — Using first principles calculations as based on density functional theory, we propose a class of so far unexplored diluted ferromagnetic semiconductors and half-metals. Here, we study the electronic properties of recently synthesized 4d and 5d transition metal dinitrides. In particular, we address Mn- and Fe-substitution in PtN₂ and PdN₂. Structural relaxation shows that the resulting ordered compounds, Pt_{0.75}(Mn,Fe)_{0.25}N₂ and Pd_{0.75}(Mn,Fe)_{0.25}N₂, maintain the cubic crystal symmetry of the parent compounds. On substitution, all compounds exhibit long-range ferromagnetic order. While both Pt_{0.75}Mn_{0.25}N₂ and Pd_{0.75}Mn_{0.25}N₂ are semiconducting, Fe-substitution causes half-metallic behavior for both parent materials.

> Abdeslam Houari Department of Physics, Theoretical Physics Laboratory, Univesity of Bejaia, Algeria

> > Electronic form version 1.4

Date submitted: 12 Oct 2011