A unified quantum mechanics embedding theory for materials and molecules1 CHEN HUANG, Department of Physics, Princeton University, Princeton, New Jersey 08544, USA, MICHELE PAVONE, EMILY CARTER2, Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA — It is essentially impossible to apply highly accurate quantum mechanics methods to large material samples, creating a need for a sophisticated embedding theory that can locally refine the accuracy of predicted properties. Here, we present a new ab-initio embedding theory that can treat different regions in the material with quantum mechanics methods of appropriately varying levels of accuracy in a seamless way. We first remove the non-uniqueness of embedding potential definitions that exists in most previous embedding theories by introducing a physical constraint that all regions share a common embedding (interaction) potential. We then introduce a key step to achieve seamless embedding: reformulating the system’s total energy solely in terms of the embedding potential, i.e., we construct a potential-functional embedding theory (PFET). We demonstrate how to efficiently solve PFET for molecules and materials and give an outlook for how to perform seamless “multi-physics” material simulations with PFET.

1We acknowledge the Office of Naval Research and the National Science Foundation for the support

2Both Pavone and Carter are also affiliated with the Program in Applied and Computational Mathematics, and the Andlinger Center for Energy and the Environment, Princeton University

Chen Huang
Department of Physics, Princeton University,
Princeton, New Jersey 08544, USA

Date submitted: 24 Oct 2011
Electronic form version 1.4