Probing the spin ice state in the cubic pyrochlore Ho$_2$Ge$_2$O$_7$ ALANNAH HALLAS, University of Manitoba, HAIDONG ZHOU, National High Magnetic Field Laboratory, STEVEN BRAMWELL, University College London, CHRIS WIEBE, University of Winnipeg, JASON GARDNER, National Institute of Standards and Technology — Spin ices are a remarkable magnetic ground state that can arise in geometrically frustrated pyrochlores, A$_2$B$_2$O$_7$, when magnetic rare earth ions are situated on the vertices of a lattice of corner sharing tetrahedra. Competing nearest-neighbor and long-range dipolar interactions result in a short-range ordered ground state for each tetrahedron in which two spins point in and two spins point out [1]. The excitations in spin ices are equally remarkable; spin ices are the only known hosts of magnetic monopoles, emergent quasiparticles with a net magnetic charge. The cubic pyrochlore Ho$_2$Ge$_2$O$_7$ was prepared with a high temperature and high pressure technique. Preliminary DC susceptibility, heat capacity and X-ray diffraction experiments confirmed that Ho$_2$Ge$_2$O$_7$ has the bulk properties of a spin ice including residual entropy equal to the Pauling value for water ice [2]. The results of a polarized neutron scattering experiment performed at ILL as well as AC susceptibility and heat capacity measurements will be presented, and compared to the canonical spin ices.

Alannah Hallas
University of Manitoba

Date submitted: 26 Oct 2011