MAR12-2011-000229

Abstract for an Invited Paper for the MAR12 Meeting of the American Physical Society

Design of nanocatalysts for improved selectivity and stability FRANCISCO ZAERA, University of California

Several examples from ongoing work in our laboratory on the use of self-assembly to prepare heterogeneous catalysts with novel architectures will be discussed in this presentation. In one case, catalysts consisting of dispersed platinum metal nanoparticles with narrow size distributions and well-defined shapes were prepared and tested for the selective promotion of carbon-carbon double-bond cis-trans isomerization reactions in olefins. It was shown that the selective formation of the cis isomer could be controlled by using tetrahedral particles with exposed (111) facets. In a second example, catalysts based on small platinum nanoparticles of well-defined sizes were made by using dendrimers as scaffolding structures. The organic framework in that case can provide new fuctionality, including chirality as a way to introduce enantioselectivity. The third example involves the control of metal nanoparticle sintering by covering those with a layer of mesoporous silica grown on top. The final case to be discussed is one where yolk@shell metal-semiconductor constructs are being developed for increase stability in oxidation and photocatalytic applications.