Abstract Submitted for the MAR12 Meeting of The American Physical Society

Sorting Category: 11.8 (T)

Fitting of m^*/m with Divergence Curve for He₃ Fluid Monolayer using Hole-driven Mott Transition HYUN-TAK KIM, MIT Creative Research Center in ETRI — The electron-electron interaction for strongly correlated systems plays an important role in formation of an energy gap in solid. The breakdown of the energy gap is called the Mott metal-insulator transition (MIT) which is different from the Peierls MIT induced by breakdown of electron-phonon interaction generated by change of a periodic lattice. It has been known that the correlated systems are inhomogeneous. In particular, He₃ fluid monolayer [1] and $La_{1-x}Sr_{x}TiO_{3}$ [2] are representative strongly correlated systems. Their doping dependence of the effective mass of carrier in metal, m^{*}/m, indicating the magnitude of correlation (Coulomb interaction) between electrons has a divergence behavior. However, the fitting remains unfitted to be explained by a Mott-transition theory with divergence. In the case of He_3 regarded as the Fermi system with one positive charge (2) electrons + 3 protons), the interaction between He₃ atoms is regarded as the correlation in strongly correlated system. In this presentation, we introduce a Hole-driven MIT with a divergence near the Mott transition [3] and fit the m^{*}/m curve in He₃ [1] and La_{1-x}Sr_xTiO₃ systems with the Hole-driven MIT with $m^*/m=1/(1-\rho^4)$ where ρ is band filling. Moreover, it is shown that the physical meaning of the effective mass with the divergence is percolation in which m*/m increases with increasing doping concentration, and that the magnitude of m^*/m is constant.

[1] Phys. Rev. Lett. 90, 115301 (2003).

[2] Phys. Rev. Lett. 70, 2126 (1993).

Hyun-Tak Kim

Prefer [9] Physica C 460-462, 1076 (2007).htkim@etri.re.kr Prefer Poster Session MIT Creative Research Center in ETRI

Date submitted: 05 Jan 2012

Х

Electronic form version 1.4