High T_c Ferrimagnetism, Multiband Mott Transition and Spin-Orbit Coupling in Double Perovskites

ONUR ERTEN, O. NGANBA MEETEI, The Ohio State University, ANAMITRA MUKHERJEE, University of British Columbia, MOHIT RANDERIA, NANDINI TRIVEDI, PATRICK M. WOODWARD, The Ohio State University — The ferrimagnetic insulator Sr$_2$CrOsO$_6$ (SCOO), which has the highest $T_c = 725$K among all double perovskites, raises several questions. Why is this material an insulator? What sets the scale for the high T_c? Why is there a net moment given that both Cr and Os have d3 configurations? What is the role of spin-orbit coupling in Os? Finally, why does SCOO show a highly unusual, non-monotonic magnetization $M(T)$ as a function of temperature? We address all of these questions. First, we describe the charge sector using slave-rotor mean field theory and obtain an analytic Mott criterion $\sqrt{U_{Cr}U_{Os}} > 2.5W$ relating the Hubbard U's to the bandwidth W. We argue that SCCO is a multi-band Mott insulator. Next, we argue that the orbital moment on Os is quenched in SCOO and spin-orbit coupling does not play a major role in this material. Finally, we show that the effective spin Hamiltonian for SCOO has both Cr-Os and Os-Os superexchange interactions that are frustrated. This leads to a canted ground state with a net moment at $T = 0$ and a nonmonotonic magnetization $M(T)$. Our results are in excellent agreement with available data and we make predictions to test our theory.

1Supported by the NSF-MRSEC grant DMR-0820414.

Onur Erten
The Ohio State University

Date submitted: 01 Nov 2011
Electronic form version 1.4