The Effect of Side-Chain Length on the Solid-State Structure and Optical Properties of F8BT: A DFT Study

MOHAMMAD JAVAD ESLAMIBIDGOLI, JOLANTA B. LAGOWSKI, Memorial University of Newfoundland

— Using the long-range corrected hybrid density functional theory (DFT/B97D) approach, we have performed bulk solid state calculations to investigate the influence of side-chain length on the molecular packing and optical properties of poly (9,9-di-n-octylfluorene-alt-benzothiadiazole) or F8BT. Two different packing structures, the lamellar and nearly hexagonal, were obtained corresponding to longer and shorter side-chains respectively. This behavior can be attributed to the micro-phase separations between the flexible side-chains and the rigid backbones and is in agreement with previous investigations for other hairy-rod polymers. In addition, as a result of the efficient inter-chain interactions for the lamellar structure, the dihedral angle between the F8 and BT units is reduced providing a more planar configuration for the backbone which leads to the decreased band gap (by 0.2-0.3 eV) in comparison to the hexagonal phase and the gas phase with no side-chain. Time-dependent DFT (TDDFT/B3LYP) was also used to study the excited states of the monomer of F8BT optimized in solid-state structures with different side-chain lengths. It is found that the absorption spectrum is red shifted for the polymers with lamellar structure relative to the polymers in hexagonal and gas phases.

Sun Microsystems Canada Inc (Graduate Fellowship administered by ACEnet at Memorial University)

Mohammad Javad Eslamibidgoli
Memorial University of Newfoundland

Date submitted: 01 Nov 2011

Electronic form version 1.4