Abstract Submitted for the MAR12 Meeting of The American Physical Society

on Copper Oxide Cluster CO Oxidation Ions MASAHIKO ICHIHASHI, Toyota Technological Institute, SHINICHI HIRABAYASHI, Genesis Research Institute, Inc., YOSHIYUKI KAWA-ZOE, Tohoku University — We investigated the reaction of CO and O_2 on size-selected copper cluster ions, Cu_n^+ (n=4-18) and Cu_n^- (n=4-11), by use of a tandem mass-spectrometer equipped with octopole ion guides. A coadsorbing product, $Cu_n O_2(CO)^+$, was observed in the reaction of $\operatorname{Cu}_n \operatorname{O}_2^+$ with CO, and it was found that CO adsorbs onto $\operatorname{Cu}_n \operatorname{O}_2^+$ more efficiently than onto Cu_n^+ in $n \ge 9$. This shows the cooperative coadsorption of O_2 and CO. On the other hand, in the reaction of $Cu_n O_2^$ with CO, a reduced product, Cu_nO^- , was obtained instead of the coadsorbing product, $Cu_nO_2(CO)^-$. In particular, $Cu_5O_2^-$ and $Cu_9O_2^-$ have relatively high efficiency for the production of Cu_nO^- . This result suggests the production of CO_2 by the oxidation of CO on $Cu_nO_2^-$. The DFT calculation indicates that the activation energy in the reaction of $Cu_5O_2(CO)^- \rightarrow Cu_5O(CO_2)^-$ is only 0.79 eV while that of the corresponding cation is 1.79 eV. The structure of Cu_n^- is more flexible than that of Cu_n^+ probably because of its excess electron. It is concluded that the stabilization of the transition state and the decrease of the activation energy make the CO oxidation proceed on $Cu_nO_2^-$.

> Masahiko Ichihashi Toyota Technological Institute

Date submitted: 02 Nov 2011

Electronic form version 1.4