Abstract Submitted for the MAR12 Meeting of The American Physical Society

Projector Augmented Wave formulation of orbitaldependent exchange-correlation functionals¹ XIAO XU, N.A.W. HOLZWARTH, Wake Forest University — The use of orbital-dependent exchange-correlation functionals within electronic structure calculations has recently received renewed attention for improving the accuracy of the calculations, especially correcting self-interaction errors. Since the Projector Augmented Wave (PAW) method² is an efficient pseudopotentiallike scheme which ensures accurate evaluation of all multipole moments of direct and exchange Coulomb integrals, it is a natural choice for implementing orbital-dependent formalisms. Using Fock exchange as an example of an orbital-dependent functional, we developed the formulation and numerical implementation of the approximate optimized effective potential formalism of Kreiger, Li, and Iafrate (KLI)³ within the PAW method, comparing results with the analogous Hartree-Fock treatment.⁴ Test results are presented for ground state properties of two well-known materials – diamond and LiF. This formalism can be extended to treat orbital-dependent functionals more generally.

¹Supported by NSF Grants 0427055 and 0705239
²P. Blöchl, *Phys. Rev. B* **50**, 17953 (1994).
³J. B. Krieger, Y. Li, and G. J. Iafrate *Phys. Rev. A* **45**, 101 (1992).
⁴Xiao Xu and N. A. W. Holzwarth, *Phys. Rev. B* **81**, 245105 (2010); **84**, 155113 (2011).

Xiao Xu Wake Forest University

Date submitted: 05 Nov 2011

Electronic form version 1.4