Abstract Submitted for the MAR12 Meeting of The American Physical Society

Superconductivity and structural variation of the electroncorrelated layer systems $Sr(Pd_{1-x}T_x)_2 Ge_2$ $(T = Co, Ni, or Rh; 0 \le x \le 1)^1$ H.C. KU, J.W. WANG, I.A. CHEN, Y.B. YOU, C.Y. LIN, C.H. HUANG, S.J. WANG, Department of Physics, National Tsing Hua University, Y.Y. HSU, Department of Physics, National Taiwan Normal University — Superconductivity variations in the pseudoternary $\operatorname{Sr}(\operatorname{Pd}_{1-x}T_x)_2\operatorname{Ge}_2$ layer system ($\operatorname{Pd}(4d^8), T = \operatorname{Co}(3d^7),$ Ni(3d⁸), or Rh(4d⁷); $0 \le x \le 1$) are reported. For the BaFe₂As₂-type tetragonal structure, the degenerate nd^7 or nd^8 orbital of transition metal T is splitted by c-axis squeezed TGe_4 tetrahedral crystal field in the T-Ge layer. For the isoelectronic $Sr(Pd_{1-x}Ni_x)_2Ge_2$ system, superconducting transition temperature T_c decreases monotonically from 3.12 K for 4d-band SrPd₂Ge₂ to 0.92 K for 3d-band SrNi₂Ge₂, where major contribution of conduction electrons was from the half-filled dispersive 3D-like upper-lying $nd_{xz,yz}$ bands. For the $Sr(Pd_{1-x}Rh_x)_2Ge_2$ system, T_c decreases to 2.40 K with 25% of $4d^7$ Rh substitution. For the Sr(Pd_{1-x}Co_x)₂Ge₂ system, T_c decreases sharply to 2.58 K with only 3% of $3d^7$ Co substitution. The lower T_c of the present electron-overdoped $(nd^7 \text{ or } nd^8)$ compound is due to dispersive 3D-like $nd_{xz,uz}$ conduction bands with weak electron correlation.

¹This work was supported by NSC98-2112-M-007-013-MY3 and NSC99-2112-M-003-007.

H. C. Ku Department of Physics, National Tsing Hua University

Date submitted: 08 Nov 2011

Electronic form version 1.4